An Empirical Study of Minimum Description Length Model Selection with Infinite Parametric Complexity

نویسندگان

  • Steven de Rooij
  • Peter Grünwald
چکیده

Parametric complexity is a central concept in Minimum Description Length (MDL) model selection. In practice it often turns out to be infinite, even for quite simple models such as the Poisson and Geometric families. In such cases, MDL model selection as based on NML and Bayesian inference based on Jeffreys’ prior can not be used. Several ways to resolve this problem have been proposed. We conduct experiments to compare and evaluate their behaviour on small sample sizes. We find interestingly poor behaviour for the plug-in predictive code; a restricted NML model performs quite well but it is questionable if the results validate its theoretical motivation. A Bayesian marginal distribution with Jeffreys’ prior can still be used if one sacrifices the first observation to make a proper posterior; this approach turns out to be most dependable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Geometric Formulation of Occam’s Razor For Inference of Parametric Distributions

I define a natural measure of the complexity of a parametric distribution relative to a given true distribution called the razor of a model family. The Minimum Description Length principle (MDL) and Bayesian inference are shown to give empirical approximations of the razor via an analysis that significantly extends existing results on the asymptotics of Bayesian model selection. I treat paramet...

متن کامل

The MDL model choice for linear regression

In this talk, we discuss the principle of Minimum Description Length (MDL) for problems of statistical modeling. By viewing models as a means of providing statistical descriptions of observed data, the comparison between competing models is based on the stochastic complexity (SC) of each description. The Normalized Maximum Likelihood (NML) form of the SC (Rissanen 1996) contains a component tha...

متن کامل

Higher-order asymptotics for the parametric complexity

The parametric complexity is the key quantity in the minimum description length (MDL) approach to statistical model selection. Rissanen and others have shown that the parametric complexity of a statistical model approaches a simple function of the Fisher information volume of the model as the sample size n goes to infinity. This paper derives higher-order asymptotic expansions for the parametri...

متن کامل

MDL, Bayesian Inference and the Geometry of the Space of Probability Distributions

The Minimum Description Length (MDL) approach to parametric model selection chooses a model that provides the shortest codelength for data, while the Bayesian approach selects the model that yields the highest likelihood for the data. In this article I describe how the Bayesian approach yields essentially the same model selection criterion as MDL provided one chooses a Jeffreys prior for the pa...

متن کامل

An Empirical Study of MDL Model Selection with Infinite Parametric Complexity

Parametric complexity is a central concept in MDL model selection. In practice it often turns out to be infinite, even for quite simple models such as the Poisson and Geometric families. In such cases, MDL model selection as based on NML and Bayesian inference based on Jeffreys’ prior can not be used. Several ways to resolve this problem have been proposed. We conduct experiments to compare and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006